Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate.

نویسندگان

  • Els Louagie
  • Neil A Taylor
  • Daisy Flamez
  • Anton J M Roebroek
  • Nicholas A Bright
  • Sandra Meulemans
  • Roel Quintens
  • Pedro L Herrera
  • Frans Schuit
  • Wim J M Van de Ven
  • John W M Creemers
چکیده

Furin is a proprotein convertase which activates a variety of regulatory proteins in the constitutive exocytic and endocytic pathway. The effect of genetic ablation of fur was studied in the endocrine pancreas to define its physiological function in the regulated secretory pathway. Pdx1-Cre/loxP furin KO mice show decreased secretion of insulin and impaired processing of known PC2 substrates like proPC2 and proinsulin II. Both secretion and PC2 activity depend on granule acidification, which was demonstrated to be significantly decreased in furin-deficient beta cells by using the acidotrophic agent 3-(2,4-dinitroanilino)-3'amino-N-methyldipropylamine (DAMP). Ac45, an accessory subunit of the proton pump V-ATPase, was investigated as a candidate substrate. Ac45 is highly expressed in islets of Langerhans and furin was able to cleave Ac45 ex vivo. Furthermore, the exact cleavage site was determined. In addition, reduced regulated secretion and proinsulin II processing could be obtained in the insulinoma cell line betaTC3 by downregulation of either furin or Ac45. Together, these data establish an important role for furin in regulated secretion, particularly in intragranular acidification most likely due to impaired processing of Ac45.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

V-ATPase-Mediated Granular Acidification Is Regulated by the V-ATPase Accessory Subunit Ac45 in POMC-Producing Cells

The vacuolar (H(+))-ATPase (V-ATPase) is an important proton pump, and multiple critical cell-biological processes depend on the proton gradient provided by the pump. Yet, the mechanism underlying the control of the V-ATPase is still elusive but has been hypothesized to involve an accessory subunit of the pump. Here we studied as a candidate V-ATPase regulator the neuroendocrine V-ATPase access...

متن کامل

Versatile Roles of V-ATPases Accessory Subunit Ac45 in Osteoclast Formation and Function

Vacuolar-type H(+)-ATPases (V-ATPases) are macromolecular proton pumps that acidify intracellular cargos and deliver protons across the plasma membrane of a variety of specialized cells, including bone-resorbing osteoclasts. Extracellular acidification is crucial for osteoclastic bone resorption, a process that initiates the dissolution of mineralized bone matrix. While the importance of V-ATPa...

متن کامل

Intracellular trafficking of the vacuolar H+-ATPase accessory subunit Ac45.

Ac45 is a type I transmembrane protein associated with vacuolar H+-ATPase, a proton pump mediating the acidification of multiple intracellular organelles. In this study, we examined the intracellular routing of Ac45 in transfected CV-1 fibroblasts. Steady state immunolabeling showed that Ac45 is located on the plasma membrane and in a vacuolar compartment in the juxtanuclear region. Antibody in...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

Rabconnectin3α promotes stable activity of the H+ pump on synaptic vesicles in hair cells.

Acidification of synaptic vesicles relies on the vacuolar-type ATPase (V-ATPase) and provides the electrochemical driving force for neurotransmitter exchange. The regulatory mechanisms that ensure assembly of the V-ATPase holoenzyme on synaptic vesicles are unknown. Rabconnectin3α (Rbc3α) is a potential candidate for regulation of V-ATPase activity because of its association with synaptic vesic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 34  شماره 

صفحات  -

تاریخ انتشار 2008